by user8795
Last Updated October 20, 2019 05:20 AM

Let $A$ be a $n \times n$ completely positive matrix and cp-rank is the minimal number of summands in a rank $1$ representation of $A$, $A = \sum_{i=1}^{k}b_ib_i^T, b_i \geq 0$, where $b_i \geq 0$ means that $b_i$ has entries $\geq 0$. So here cp-rank of $A$ is $k$.

Suppose that $A_n$ is completely positive for every $n$, and that $$A = \lim_{n \to \infty} A_n.$$

Then, cp-rank $A \leq \lim_{n \to \infty} \inf$ cp-rank $A_n$.

Updated August 26, 2018 01:20 AM

- Serverfault Query
- Superuser Query
- Ubuntu Query
- Webapps Query
- Webmasters Query
- Programmers Query
- Dba Query
- Drupal Query
- Wordpress Query
- Magento Query
- Joomla Query
- Android Query
- Apple Query
- Game Query
- Gaming Query
- Blender Query
- Ux Query
- Cooking Query
- Photo Query
- Stats Query
- Math Query
- Diy Query
- Gis Query
- Tex Query
- Meta Query
- Electronics Query
- Stackoverflow Query
- Bitcoin Query
- Ethereum Query